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A model for second-harmonic resonance between two gravity–capillary waves is
derived, for the case where weak wind and laminar viscosity are of comparable
importance. It is revealed that there exist two threshold wind speeds. For winds
weaker than the lower threshold, waves are damped. For winds stronger than the
upper threshold, the wave energy becomes unbounded and the spectrum cannot be
confined to two resonating harmonics. In the intermediate range there exist steady
progressive combination waves of the first and second harmonics. These are Wilton’s
ripples in equilibrium with wind input and viscous dissipation, and are probably
physically observable.

1. Introduction
Theoretical study of resonant interactions between gravity–capillary waves was

initiated by Harrison (1909) and Wilton (1915). Wilton (1915) solved the steady
progressive waves resulting from exact second-harmonic resonance. Wilton’s solution
was generalized to allow for detuning by Pierson & Fife (1961). These waves are
now known as steady Wilton’s ripples. McGoldrick (1965) and Simmons (1969) later
derived evolution equations for general triad resonance. Indeed, McGoldrick (1970)
pointed out that the steady solutions of Wilton (1915) correspond to special initial
conditions for the general triad resonance theory. Nayfeh (1973) considered inviscid
conservative Wilton’s ripples in the presence of a uniform air flow above the water
surface.

Jones (1992) derived cubic nonlinear evolution equations for Wilton’s ripples to
investigate their slow time and space modulation. A nonlinear stability analysis was
presented for uniform wave solutions. Christodoulides & Dias (1994) considered
nonlinear steady Wilton’s ripples on the interface between two fluids of different
densities. They let each wave consist of two components propagating in opposite
directions, and found them to be coupled at the third order. They also found that
new bifurcations arise when the density ratio is varied.

Bifurcations of steady wave trains subject to harmonic resonance were studied by
Chen & Saffman (1979). They showed that steady Wilton’s ripples are associated
with a period-doubling bifurcation, through which a pure second-harmonic wave can
become a combination wave of the first and second harmonics.

Motivated by nonlinear wave interactions under strong wind, Morland (1994)
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studied the modification of the resonance condition due to drift current, but excluded
the direct effect of wind. He assumed the current to be as strong as the phase velocity
and solved the linearized Rayleigh equation for the disturbance in water.

All these theories are based on the assumption of an inviscid fluid without dis-
sipation or wind forcing. Because of viscosity, gravity–capillary waves cannot be
sustained unless there is an external energy supply. Theories on the conservative
long-time nonlinear evolution of these waves are therefore not readily applicable to
many phenomena observed either in nature or in the laboratory.

To explain the frequency downshift of short waves observed in a wind tunnel by
Choi (1977) and Ramamonjiarisoa, Baldy & Choi (1978), Janssen (1986) investigated
the initial growth of Wilton’s ripples subject to wind forcing and viscous damping.
He found that the wind can give rise to period doubling of the waves, i.e. from the
second to the first harmonic of a Wilton’s ripple. Janssen (1987) later applied the
theory of Zakharov and generalized to a continuous spectrum of waves subject to
three-dimensional resonant triad interaction with wind forcing. He found that under
certain conditions there may be a sudden migration of the peak of the spectrum to
lower wavenumbers. In both papers Janssen (1986, 1987) employed a wind forcing
that is much stronger than the damping due to viscosity, and hence the theory is only
valid for a limited time before the wave amplitudes become too large. Bontozoglou
& Hanratty (1990) explained the observation of Choi (1977) by a Kelvin–Helmholtz
instability mechanism. However, their theory is for strong winds and highly viscous
fluids, and therefore more relevant to engineering than to geophysical applications.
Jurman, Deutsch & McCready (1992) presented theory and experiment on centimetre-
range wind-driven surface waves on a highly viscous fluid (viscosity 10–100 times
greater than water). After adjusting the gas flow to be just sufficient to produce
measurable waves, they observed that the wave of highest linear growth rate due to
wind could saturate at a small steepness, while energy was transferred to its second
harmonic which was linearly damped.

Among existing theories on non-conservative triad interaction, one class deals with
the case where the highest-frequency wave is subject to external forcing while the
lowest-frequency wave is damped. Consistent with the so-called decay instability of
waves, energy is transferred to the lowest-frequency wave by nonlinearity and then
dissipated. The resulting behaviour often leads to chaos through a series of period-
doubling bifurcations of the wave envelope. This behaviour has been reported for
applications in plasma physics (e.g. Vyshkind & Rabinovich 1976; Wersinger, Finn
& Ott 1980a, b). In a second class, the highest-frequency wave is damped while the
lowest-frequency wave is subject to external forcing, and energy is transferred to the
highest-frequency wave by nonlinearity and then dissipated. In such cases one often
does not find chaotic behaviour, but the energy may blow up after a finite time unless
the forcing is weak. This has been reported for applications in hydrodynamics (e.g.
McDougall & Craik 1991; Hughes & Proctor 1992). Analytical solutions for certain
special cases of non-conservative triad interaction were given by Miles (1976) and
Craik (1986). Chow, Bers & Ram (1992) showed that non-conservative space–time
evolution of the equations for triad resonance may yield spatio–temporal chaos; their
work belongs to the first class.

The effects of wind and viscosity on the nonlinear evolution of narrow-banded
gravity–capillary waves has been investigated theoretically by Hara & Mei (1994).

In this paper we shall examine the effects of weak wind and damping on Wilton’s
ripples. Specifically, the wind forcing and viscous damping are of smaller magnitude
than the quadratic interactions that are responsible for triad resonance (cf. the
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discussion on viscous damping in Trulsen & Mei 1995). While the inviscid theory tells
us that nonlinearity and dispersion can achieve dynamical balance to yield certain
permanent wave envelopes (Wilton 1915), we wish to examine how this balance may
be altered by slightly non-conservative effects. The general behaviour is found to
belong to the second class mentioned above.

After first summarizing the basic governing equations in §2 and the basic wind
profile in §3, scaling assumptions are described in §4 to facilitate a multiple-scales
perturbation analysis. The approximate equations are summarized in §5. Then the
perturbation analysis is carried out for the wave disturbance in water in §6 and in
air in §7. The resulting dynamical system for time evolution is summarized at the
end of §6. At the leading (second) order the dynamical system is Hamiltonian, and
its complete solution is presented in §8. The behaviour of the full non-conservative
system at the third order is discussed in §9.

2. Governing equations
Let x and z denote the horizontal and vertical coordinates, and ∇ = (∂/∂x, ∂/∂z)

denote the gradient operator. The steady part of the fluid flow has a horizontal
velocity U S = (US (z), 0). The part due to wave disturbance has velocity u = (u, w),
pressure p, and surface displacement η. The density is denoted by ρ, the kinematic
viscosity by ν, and the surface tension between water and air by Γ . Quantities in
water are unprimed, while corresponding quantities in air are distinguished by primes.

The continuity and momentum conservation equations for the wave disturbance in
water are as follows, with similar equations in air for the primed quantities:

∇ · u = 0, (2.1)

and
∂u

∂t
+ u · ∇u+ u · ∇U S +U S · ∇u = −1

ρ
∇p+ ν∇2u. (2.2)

At the water surface, the velocity is continuous,

u+U S = u′ +U ′S at z = η. (2.3)

The kinematic surface condition is

∂η

∂t
+ (u+US )

∂η

∂x
= w at z = η. (2.4)

Let the unit normal and tangential vectors to the sea surface be denoted by n and t,
respectively. Continuity of the normal stress requires that

− p

ρ
+ gη + 2νn · ∇(u+U S ) · n+

Γ

ρ
∇ · n = N at z = η, (2.5)

where N is proportional to the normal stress exerted by air

N =
ρ′

ρ

{
−p

′

ρ′
+ gη + 2ν ′n · ∇(u′ +U ′S ) · n

}
at z = η. (2.6)

Continuity of the tangential stress requires that

t · ∇(u+U S ) · n+ n · ∇(u+U S ) · t = T at z = η, (2.7)
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where T is proportional to the tangential stress exerted by air,

T =
ρ′ν ′

ρν

{
t · ∇(u′ +U ′S ) · n+ n · ∇(u′ +U ′S ) · t

}
at z = η. (2.8)

We also require that the wave disturbance dies out at large depth and height.
The pressure can be eliminated from (2.5)–(2.6) by taking the directional derivative

along the surface, t · ∇, and then substituting t · ∇p from the momentum equation:

t ·
{
∂u

∂t
+ u · ∇u+ u · ∇U S +U S · ∇u− ν∇2u

+ ∇
(
gη + 2νn · ∇(u+U S ) · n+

Γ

ρ
∇ · n

)}
= t · ∇N at z = η, (2.9)

where the pressure can be eliminated from N similarly.
Let us introduce the stream functions

u =

(
∂ψw

∂z
,−∂ψw

∂x

)
, US =

∂ΨS

∂z
, (2.10)

with similar definitions of primed quantities in the air. The pressure can be eliminated
from the momentum equation by taking the curl, and the resulting governing equation
for the stream function ψw becomes

∂

∂t
∇2ψw −

∂(ψw +ΨS,∇2(ψw +ΨS ))

∂(x, z)
− ν∇4ψw = 0. (2.11)

Similarly, the stream functions can be substituted into the surface conditions in a
straightforward manner.

3. Steady wind and wind-induced drift
The friction velocities in air and water, u′∗ and u∗, are related to the shear stress

on the undisturbed water surface τS through the relationships u∗ = (τS/ρ)1/2 and
u′∗ = (τS/ρ′)1/2.

The usual linear–logarithmic shear profile will be employed for the wind and the
induced current (cf. Miles 1962; Valenzuela 1976; Kawai 1979; Gastel, Janssen &
Komen 1985; Hara & Mei 1994). Thus the wind profile is

U ′S =


Ud +

u′2∗
ν ′
z, z 6 5

ν ′

u′∗

Ud + 5u′∗ +
u′∗
κ

(α− tanh 1
2
α), z > 5

ν ′

u′∗
,

(3.1)

where

sinh α = 2κ
u′∗
ν ′

(
z − 5

ν ′

u′∗

)
, (3.2)

and where Ud is the drift velocity of the water surface and κ = 0.4 is the universal
Kármán constant. The viscous sublayer height of the wind profile is 5ν ′/u′∗.

In water the drift current is

US =


Ud +

u2
∗
ν
z, z > −5

ν

u∗

Ud − 5u∗ +
u∗

κ
(α− tanh 1

2
α) z < −5

ν

u∗
,

(3.3)
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where

sinh α = 2κ
u∗

ν

(
z + 5

ν

u∗

)
. (3.4)

The viscous sublayer depth of the current profile is 5ν/u∗.
The wind model requires knowledge of the relationship between the drift velocity

Ud and the friction velocity in air u′∗. Our attention will be restricted to wind strengths
corresponding to an air friction velocity of less than approximately 0.17 m s−1. In this
range, existing experimental data (Gastel et al. 1985) suggest the empirical relation
Ud = 0.565 u′∗ which we shall employ here.

4. Scaling assumptions
Denoting the wavenumber and the frequency of the first harmonic of Wilton’s

ripples by

k̄ =
( ρg

2Γ

)1/2

and ω̄ =

(
3gk̄

2

)1/2

, (4.1)

we shall use their reciprocals to normalize (x, z) and t respectively. The order of
magnitude of the inviscid wave disturbance in water and air is clearly

η ∼ a, ψw, ψ
′
w ∼

ω̄a

k̄
, (4.2)

where a is a typical wave amplitude. Assuming gentle wave steepness, we shall use
the small parameter

ε = k̄a � 1 (4.3)

as the principal measure to characterize small quantities in our discussion.
It is well known that in the absence of wind and damping, nonlinear interactions

of Wilton’s ripples occur at the second order, O(ε2), while the time scale for nonlinear
development is ω̄t = O(1/ε). In order to examine the modification by and competition
between viscous damping and wind forcing, we shall introduce several order-of-
magnitude assumptions such that the two physical effects will be of comparable
importance at the third order in wave steepness. First we assume that the steady wind
velocity is comparable to the phase velocity of the waves, while the wind-induced
current in water is much smaller. Accordingly, the following normalizations are
introduced:

k̄(x, z) → (x, z), ω̄t → t,

k̄η → εη, k̄2ω̄−1(ψw, ψ
′
w) → (εψw, εψ

′
w),

k̄ω̄−1(US,Ud,U
′S ) → (εUS , εUd,U

′S ).

 (4.4)

Next we let the ratio between the densities be second order in ε:

ρ′

ρ
∼ ε2. (4.5)

Consistent with the typical kinematic viscosities in water and air, we estimate that

νk̄2

ω̄
∼ ε2,

ν ′k̄2

ω̄
∼ ε. (4.6a,b)

Thus the dimensionless viscous damping in water is of the order ε2, one order smaller
than that of nonlinearity. Our assumptions also ensure that the ratios US/U ′S and
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ν/ν ′ are both of order (ρ′/ρ)1/2 ∼ ε, consistent with the continuity of turbulent shear
stress across the sea surface.

There can be three wave-induced viscous boundary layers. In the surface boundary
layer in water the linear terms dominate the balance of horizontal momentum, while
the tangential stress on the surface is small, leading to the dominant balance in
physical variables

∂u

∂t
− ν ∂

2u

∂z2
≈ 0 with

∂u

∂z
≈ 0 at z = η. (4.7)

Hence the dimensionless thickness is O(ε) in view of (4.6a). The appropriate vertical
boundary-layer coordinate and decomposition of the stream function into inviscid
and boundary-layer components are

zBL = ε−1z, ψw = ψ + ε2ψBL. (4.8)

In air there is also a surface boundary layer. For a weak wind, the linear terms
dominate the balance of horizontal momentum, while there is little slip on the surface,
i.e.

∂u′

∂t
− ν ′ ∂

2u′

∂z2
≈ 0 with u′ = u at z = η. (4.9)

Hence this boundary-layer has dimensionless thickness O(ε1/2) in view of (4.6b).
Above the sea surface, there is an internal layer at the critical height where the

wind speed is equal to the phase velocity of the wave, implying

∂u′

∂t
+U ′S

∂u′

∂x
≈ 0. (4.10)

In this internal layer the dominant balance of the horizontal momentum is expressed
by

∂U ′S

∂z
w′ − ν ′ ∂

2u′

∂z2
≈ 0. (4.11)

Hence the dimensionless thickness of the internal layer is O(ε1/3).
For a vanishingly weak wind such that the waves are damped, the two viscous

shear layers in air are well separated from each other. For a strong wind such that
the waves grow steadily, these layers coalesce (e.g. Gastel et al. 1985). For moderately
weak winds, the two layers can overlap partially, rendering the physics complicated
and analytical treatment ineffective. Hence we shall solve the wave disturbance in
air numerically without separating the viscous and inviscid parts. An estimate of the
importance of the viscous shear layers in air can be discerned by letting

z′BL = µ−1z, ψ′w = ψ′ + µψ′BL with ε1/2 6 µ 6 ε1/3. (4.12)

As a quantitative check of these scaling assumptions, we take the following values
for surface tension, gravitational acceleration, densities and laminar viscosities at
20◦C:

Γ = 7.28×10−2 N m−1, g = 9.80 m s−2, ρ = 9.98×102 kg m−3, ρ′ = 1.205 kg m−3,

ν = 1.004× 10−6 m2 s
−1
, ν ′ = 1.50× 10−5 m2 s

−1
.

The characteristic wavenumber and frequency are found to be

k̄ = 259 m−1 =
2π

2.4 cm
, ω̄ = 61.7 s−1 = 2π × 9.8 Hz,
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so that the non-dimensional viscosities and density ratio are

νk̄
2

ω̄
= 1.1× 10−3,

ν ′k̄
2

ω̄
= 1.6× 10−2,

ρ′

ρ
= 1.2× 10−3.

Thus the steepness has the rough magnitude ε ≈ 0.04. The implied wave amplitude is
a ∼ 0.15 mm, the implied horizontal wind and drift velocities near the interface are
U ′S ∼ 24 cm s−1 and US ∼ 1 cm s−1, and the implied boundary-layer thicknesses are
ε/k̄ ∼ 0.15 mm in water and µ/k̄ ≈ 1 mm in air.

5. Approximate equations for the wave disturbance
From here on all variables are dimensionless unless noted otherwise.

5.1. Flow equations and boundary conditions for water

With the introduction of the expansion (4.8), the governing equations for the water
flow field can be separated for the interior and the boundary-layer components. For
the interior flow field we have

∂

∂t
∇2ψ − ε∂(ΨS + ψ,∇2(ΨS + ψ))

∂(x, z)
− ε2σ2∇4ψ = 0, (5.1)

where

σ2 =
νk̄

2

ε2ω̄
= O(1). (5.2)

In the surface boundary layer, we only need to analyse ψBL up to the leading
order because it only appears at the highest orders considered of the kinematic and
tangential stress surface conditions due to (4.8),

∂2ψBL

∂t∂zBL
− ∂ψ

∂x

∂2ψBL

∂z2
BL

− σ2 ∂
3ψBL

∂z3
BL

= O(ε). (5.3)

The kinematic surface condition and normal stress condition must be accurate to
the first three orders. The normal stress from air enters only at O(ε2) in (2.9). It is
defined by (2.6), and will be found after the wave disturbance in air is solved.

The tangential stress condition provides a boundary condition for ψBL. The
tangential stress from air is of relative order ε/µ in (2.7), which is too small to be
included in the present analysis.

Since the surface boundary-layer thickness is comparable with the wave amplitude
O(ε), a new vertical coordinate is introduced which follows the actual position of the
free surface:

z̄BL = zBL − η(t, x). (5.4)

In the surface boundary conditions, the interior variables will thus be evaluated
at z = εη while the boundary-layer variables will be evaluated at z̄BL = 0. The
interior variables in the surface conditions can then be Taylor-expanded around
the equilibrium surface position z = 0, while the boundary-layer variables remain
evaluated at the instantaneous surface. The kinematic surface condition then becomes

∂η

∂t
+
∂ψ

∂x
+ ε

(
US ∂η

∂x
+
∂η

∂x

∂ψ

∂z
+ η

∂2ψ

∂x∂z

)
+ ε2

(
∂US

∂z
η
∂η

∂x
+
∂ψBL

∂x

+ η
∂η

∂x

∂2ψ

∂z2
+

1

2
η2 ∂3ψ

∂x∂z2

)
= O(ε3) at z = 0, z̄BL = 0. (5.5)
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The normal stress condition becomes

∂2ψ

∂t∂z
+

2

3

∂η

∂x
−1

3

∂3η

∂x3
+ε

(
−∂ψ
∂x

∂US

∂z
+

∂2ψ

∂x∂z
US − ∂ψ

∂x

∂2ψ

∂z2
+

∂2ψ

∂x∂z

∂ψ

∂z
+ η

∂3ψ

∂t∂z2

− ∂η

∂x

∂2ψ

∂t∂x

)
− ε2

[
η
∂ψ

∂x

∂2US

∂z2
+
∂η

∂x

∂2ψ

∂x2
US − η ∂3ψ

∂x∂z2
US + η

∂ψ

∂x

∂3ψ

∂z3
+ σ2 ∂

3ψ

∂z3

+
∂η

∂x

∂2ψ

∂x2

∂ψ

∂z
− η ∂3ψ

∂x∂z2

∂ψ

∂z
+ 3σ2 ∂3ψ

∂x2∂z
− ∂η

∂x

∂ψ

∂x

∂2ψ

∂x∂z
− 1

2
η2 ∂

4ψ

∂t∂z3
+ η

∂η

∂x

∂3ψ

∂t∂x∂z

− 1

2

(
∂η

∂x

)2
∂3η

∂x3
− ∂η

∂x

(
∂2η

∂x2

)2

+
∂N

∂x

]
= O(ε3) at z = 0, z̄BL = 0. (5.6)

The tangential stress condition becomes

∂2ψBL

∂z̄2
BL

+
∂2ψ

∂z2
− ∂2ψ

∂x2
= O

(
ε

µ

)
at z = 0, z̄BL = 0. (5.7)

The governing equation for the boundary-layer stream function (5.3) simplifies to

∂2ψBL

∂t∂z̄BL
− σ2 ∂

3ψBL

∂z̄3
BL

= O(ε). (5.8)

Finally, the boundary condition at large depth is ψ → 0 as z → −∞.
To enable further progress, multiple-scale expansions are introduced for the un-

knowns in water:

η = η1 + εη2 + ε2η3 + . . . , (5.9)

ψ = ψ1 + εψ2 + ε2ψ3 + . . . , (5.10)

where all the perturbed quantities depend on the fast coordinates (t, x) and the slow
coordinates tj = εjt and xj = εjx for j = 1, 2. These perturbation expansions have
been carried out by the symbolic computation tool macsyma. Details at each order
are given later, when their solutions are discussed.

5.2. Flow equations and boundary conditions for air

After substituting (4.4) into the governing equations for the air flow, we get the
following equation for the stream function with a truncation error of O(ε/µ):

∂

∂t
∇2ψ′w +U ′S

∂

∂x
∇2ψ′w − µ

∂2U ′S

∂z2

∂ψ′w
∂x
− ε

µ2
σ′

2∇4ψ′w = O

(
ε

µ

)
(5.11)

where

σ′2 =
ν ′k̄2

εω̄
= O(1). (5.12)

The presence of the scaling factor µ is due to the boundary-layer component of ψ′w ,
according to (4.12).

The no-slip surface boundary conditions can be Taylor-expanded both with re-
spect to the interior and the boundary-layer components because the boundary-layer
thickness in air is greater than the surface displacement. After Taylor-expansion, and
elimination of terms that only govern the wind profile, we get

∂ψ′w
∂z

=
∂ψ

∂z
− ∂U ′S

∂z
η + O

(
ε

µ

)
at z = 0 (5.13)
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and
∂ψ′w
∂x

=
∂ψ

∂x
+ O(ε) at z = 0. (5.14)

Finally, we require that the wave disturbance vanishes at great height: ψ′w → 0 as
z →∞.

After the stream function ψ′w is solved, the normal stress N for application in (5.6)
can be calculated:

∂N

∂x
=

ρ′

ε2ρ

{
∂2ψ′w
∂t∂z

+U ′S
∂2ψ′w
∂x∂z

− ∂U ′S

∂z

∂ψ′w
∂x
− ε

µ2
σ′

2 ∂

∂z
∇2ψ′w +

2

3

∂η

∂x

}
+ O

(
ε

µ

)
at z = 0. (5.15)

The stream function and normal stress will be solved with a relative truncation
error of O(ε/µ), consistent with neglecting the leading nonlinear effects in air. The
perturbation equations are given later, when their solutions are discussed.

6. Wave disturbance in water and evolution equations
With the expansions (5.9) and (5.10), the problems for the interior flow in water

(5.1), (5.5) and (5.6) yield a set of perturbation problems with the following general
form for all orders m:

∂

∂t
∇2ψm = Em for −∞ < z < 0, (6.1)

∂ηm

∂t
+
∂ψm

∂x
=Fm at z = 0 (6.2)

and

∂2ψm

∂t∂z
+

2

3

∂ηm

∂x
− 1

3

∂3ηm

∂x3
= Gm at z = 0. (6.3)

The forcing functions on the right-hand sides depend on the solutions at lower orders,
and for the third order they also depend on the boundary-layer correction and stresses
exerted on the surface.

6.1. First-order problem for water interior

The first-order problem (6.1)–(6.3) with m = 1 is homogeneous, E1 = F1 = G1 = 0.
The general solution is a progressive wave

η1 =A(t1, t2, x1, x2)e
i(kx−ωt) + c.c., (6.4)

ψ1 =
ω

k
A(t1, t2, x1, x2)e

i(kx−ωt)+kz + c.c., (6.5)

subject to the dimensionless dispersion relation

ω2 = 2
3
k + 1

3
k3. (6.6)

Wilton’s ripples correspond to the special solution which is a superposition of a
first- and a second-harmonic wave with dimensionless wavenumbers k = 1 and k = 2.
The analysis will be restricted to slow evolution in time only. After introducing the
phase function

θ = x− t, (6.7)
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the leading-order solution for second-harmonic resonance is

η1 = A(t1, t2)e
iθ + B(t1, t2)e

2iθ + c.c., (6.8)

ψ1 = A(t1, t2)e
iθ+z + B(t1, t2)e

2iθ+2z + c.c. (6.9)

6.2. Second-order problem for water interior

The second-order problem (6.1)–(6.3) with m = 2 is forced by E2, F2 and G2. They
are omitted here for brevity. Owing to quadratic interactions, the solution must be of
the form

η2 = η̂2,0 + η̂2,1e
iθ + η̂2,2e

2iθ + η̂2,3e
3iθ + η̂2,4e

4iθ + c.c., (6.10)

ψ2 = ψ̂2,0 + ψ̂2,1e
iθ + ψ̂2,2e

2iθ + ψ̂2,3e
3iθ + ψ̂2,4e

4iθ + c.c. (6.11)

The governing equations at the second order give no contribution for the zeroth-
harmonic, hence η̂2,0(t1, t2) and ψ̂2,0(t1, t2, z) remain undetermined. The problems
for each of the remaining harmonics have the general form for order m = 2 and
harmonics n = 1, 2, 3, 4:

∂2ψ̂m,n

∂z2
− n2ψ̂m,n = Em,ne

nz for −∞ < z < 0, (6.12)

η̂m,n − ψ̂m,n = Fm,n at z = 0, (6.13)

∂ψ̂m,n

∂z
− n2 + 2

3
η̂m,n = Gm,n at z = 0. (6.14)

The forcing terms E2,n, F2,n, G2,n are omitted for brevity.
We have chosen to let the homogeneous part of the solutions to the first- and

second-harmonic problems correspond to η̂2,1 = η̂2,2 = 0. The solvability conditions
for these problems take the form∫ 0

−∞
e2nzE2,n dz = nF2,n + G2,n, n = 1, 2, (6.15)

and yield the slow evolution equations

∂A

∂t1
+ 2iA

∫ 0

−∞
e2zUS (z) dz + iA∗B = 0 (6.16)

and

∂B

∂t1
+ 8iB

∫ 0

−∞
e4zUS (z) dz + 1

2
iA2 = 0. (6.17)

The integral terms give phase shifts induced by the shear current in water.

6.3. Surface boundary layer in water

The surface boundary layer is governed by (5.8) with tangential stress boundary
condition (5.7). The leading-order boundary-layer problem is linear, hence we assume
a solution of the form

ψBL = ψ̂BL,1e
iθ + ψ̂BL,2e

2iθ + c.c. (6.18)

For compactness we write A1 = A and A2 = B for the time being; the first- and
second-harmonic boundary-layer problems are for n = 1, 2

n
∂ψ̂BL,n

∂z̄BL
− iσ2 ∂

3ψ̂BL,n

∂z̄3
BL

= 0 for −∞ < z̄BL < 0, (6.19)
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∂2ψ̂BL,n

∂z̄2
BL

= −2n2An at z̄BL = 0. (6.20)

The solutions are

ψ̂BL,n = −2iσ2nAn exp(−n1/2σ−1e−iπ/4z̄BL), n = 1, 2. (6.21)

6.4. Third-order problem for water interior

The third-order problem, (6.1)–(6.3) with m = 3, has lengthy right-hand sides E3,
F3 and G3. They are omitted here for brevity. For third-order improvement of the
evolution equations for A and B, we need the zeroth-harmonic of the second-order
problem, and to invoke the solvability of the first- and second-harmonic problems. It
is enough to look at

η3 = η̂3,1e
iθ + η̂3,2e

2iθ + . . . , (6.22)

ψ3 = ψ̂3,1e
iθ + ψ̂3,2e

2iθ + . . . . (6.23)

We also expand formally the normal stress on the sea surface into harmonics:

N = N̂1Aeiθ + N̂2Be2iθ + c.c. (6.24)

The computation of the normal stress awaits the solution of the air problem in the
next section.

The zeroth-harmonic problem, which governs the zeroth-harmonic quantities intro-
duced at the second order, is not forced:

∂3ψ̂2,0

∂t1∂z2
= 0, with

∂η̂2,0

∂t1
= 0 and

∂2ψ̂2,0

∂t1∂z
= 0 at z = 0. (6.25)

We therefore set ψ̂2,0 = η̂2,0 = 0.
The problems for order m = 3 and harmonics n = 1, 2 are given by (6.12)–(6.14).

The expressions for E3,n, F3,n and G3,n are long, and are not given here.
Invoking solvability of the inhomogeneous problems for n = 1, 2, we get

∂A

∂t2
+ (d1 + ia11)A+ 10icA∗B + iA|A|2 − 21

2
iA|B|2 = 0 (6.26)

and
∂B

∂t2
+ (d2 + ia21)B + 9

2
icA2 − 41

4
iB|A|2 − 4iB|B|2 = 0. (6.27)

Use has been made of (6.16) and (6.17) to remove the derivatives with respect to
t1. The coefficients an1 and c depend on the shear current in the water, while the
coefficients dn depend on viscous shear in water and the wave disturbance in air.

6.5. Summary of the slow evolution equations for Wilton’s ripples

We can now combine (6.16)–(6.17) and (6.26)–(6.27) to get the evolution equations
valid for time t1 = O(ε−1)†. The results are

∂A

∂t1
+ {εd1 + i (a10 + εa11)}A+ i {1 + 10εc}A∗B + iεA|A|2 − 21

2
iεA|B|2 = 0 (6.28)

† Jones (1992) derived an analogous system of two coupled cubic nonlinear Schrödinger equations
for the case of no wind, shear current or viscosity, but included general spatial modulation on scales
x1 and y1. In the inviscid and windless limit, our evolution equations agree with Jones’, after minor
corrections.



152 K. Trulsen and C. C. Mei

and

∂B

∂t1
+ {εd2 + i (a20 + εa21)}B + i

{
1
2

+ 9
2
εc
}
A2 − 41

4
iεB|A|2 − 4iεB|B|2 = 0. (6.29)

The coefficients that depend on the shear current in water are for n = 1, 2

an0 = 2n2

∫ 0

−∞
e2nzUS (z) dz, (6.30)

an1 = n2

∫ 0

−∞
e2nz

(
US (z)

)2
dz − 2n3

(∫ 0

−∞
e2nzUS (z) dz

)2

, (6.31)

c = 2

∫ 0

−∞
e4zUS (z) dz −

∫ 0

−∞
e2zUS (z) dz. (6.32)

The complex coefficients that account for viscous damping and linear normal stress
from air on the water surface are

dn = 2n2σ2 − 1
2
iN̂n, n = 1, 2. (6.33)

The complex coefficients N̂n, which depend on the wave disturbance in air, will be
derived in §7.

Our approximate theory has only two independent parameters: (i) the typical wave
steepness ε, and (ii) the wind intensity, given in terms of the friction velocity in air u′∗.

It is shown in the Appendix that the total energy is

E = 2(|A|2 + 2|B|2) + 2ε(a10|A|2 + a20|B|2) + εRe(A2B∗). (6.34)

6.6. Reduction of dimension

The dynamical system (6.28)–(6.29) has four real dimensions, which can be reduced
to three by using the fact that the phase angles appear only as a difference. To this
end we rewrite the complex amplitudes in polar form

A = Ueiθ1 , B =Veiθ2 , φ = 2θ1 − θ2. (6.35)

However, we find it more convenient to work in rectangular than polar coordinates,
and thus following Vyshkind & Rabinovich (1976), we introduce the transformed
variables

X =V cosφ, Y =V sinφ, Z = U2. (6.36)

Hence Z is non-negative and measures the square of the amplitude of the first
harmonic. The radial distance from the Z-axis, (X2 + Y 2)1/2, is a measure of the
second-harmonic amplitude. The dynamics is confined to the upper half of the
(XY Z)-space.

The dynamical system now becomes

dX

dt1
= −εd2,RX − α3Y − 2α1XY + 49

4
εY Z − 17ε(X2 + Y 2)Y , (6.37)

dY

dt1
= α3X − εd2,RY + α2Z + 2α1X

2 − 49
4
εXZ + 17εX(X2 + Y 2), (6.38)

dZ

dt1
= −2εd1,RZ + 2α1Y Z. (6.39)

Note that when Z = 0, only the second harmonic is present.
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The coefficients αn are given by

α1 = −1− 10εc, α2 = 1
2

+ 9
2
εc (6.40)

and

α3 = −2a10 + a20 + ε
(
−2a11 + a21 − 2d1,I + d2,I

)
. (6.41)

We have split the linear forcing coefficients dn into real and imaginary parts

dn = dn,R + idn,I , n = 1, 2. (6.42)

The energy (6.34) is now expressed by

E = 4(X2 + Y 2) + 2Z + ε
(
XZ + 2a20(X

2 + Y 2) + 2a10Z
)
. (6.43)

7. Wave disturbance in air
To complete the evolution equations, we must find the air motion in order to

calculate the stresses on the sea surface. The linear problem in air, which is generic
for all wavenumbers, is solved for an arbitrary simple-harmonic wave. The explicit
orderings in terms of ε and µ are omitted in this section for brevity.

7.1. Linear problem in air for a simple-harmonic wave

At the leading order, the wave disturbance in water is given by (6.4)–(6.5). The
corresponding disturbance in air must be of the form

ψ′ = ψ̂′k(z)Aei(kx−ωt) + c.c., (7.1)

N = N̂kAei(kx−ωt) + c.c. (7.2)

From (5.11), ψ̂′k can be shown to obey the homogeneous Orr–Sommerfeld equation[
ω − kU ′S − iσ′

2

(
∂2

∂z2
− k2

)](
∂2

∂z2
− k2

)
ψ̂′k + k

∂2U ′S

∂z2
ψ̂′k = 0 (7.3)

with the inhomogeneous boundary conditions (5.13)–(5.14)

ψ̂′k =
ω

k
and

∂ψ̂′k
∂z

= ω − ∂U ′S

∂z
at z = 0. (7.4)

From (6.28) and (6.29) we see that the net growth rate of the simple-harmonic wave
is given by the real part of −dn in (6.33) generalized to arbitrary wavenumbers:

Re

{
−2k2σ2 +

ik

2ω
N̂k

}
. (7.5)

The first term in the braces represents internal viscous dissipation, while the second
term represents forcing by the normal stress

N̂k =
ρ′

ρ

{
−∂U

′S

∂z
ψ̂′k −

(ω
k
−U ′S + ikσ′

2
) ∂ψ̂′k
∂z

+
iσ′2

k

∂3ψ̂′k
∂z3

+
2

3

}
. (7.6)

Using the solution for k = 1, 2, we obtain the linear response in air according to

ψ′ = ψ̂′1Aeiθ + ψ̂′2Be2iθ + c.c., (7.7)

N = N̂1Aeiθ + N̂2Be2iθ + c.c. (7.8)
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Figure 1. Linear growth rates: (a) our result; (b) asymptotic result of Gastel et al. (1985); (c) our
result including tangential stress (Trulsen 1995). Air friction velocity u′∗ (m s−1): - - -, 0.214; - · - · ,
0.170; - · · · , 0.136; — — —, 0.050; solid line, no wind. The vertical lines indicate the first- and
second-harmonic Wilton’s ripples.

7.2. Computed growth rates

In figure 1 our linear growth rates predicted by (7.5) for four wind intensities are
shown by the curves (a). The limit of no wind is shown by the lower solid curve. For
comparison the asymptotic growth rates inferred from Gastel et al. (1985) are also
shown, by the curves (b). Except for the weakest wind, our predictions are only slightly
lower. The significant discrepancy for the weakest wind is because they assumed that
the two wave-induced viscous shear layers in air, i.e. the surface boundary layer and
the critical shear layer, overlap and can be treated as a single boundary layer. This
assumption is violated for vanishing winds, as discussed in §4.

More accurate computations incorporating effects of relative order ε/µ in air were
carried out in Trulsen (1995), allowing the effect of tangential stress to be assessed.
These results are shown by the curves (c). The tangential stress contributes to a
larger growth rate for air friction velocities larger than roughly 0.05 m s−1, while it
contributes to stronger damping for friction velocities smaller than roughly 0.04 m s−1.

In figure 2 we show the real and imaginary parts of the linear coefficients d1 and d2,
equation (6.33), for air friction velocities up to 0.17 m s−1. The linear growth rates for
the first and second harmonics of Wilton’s ripples are given by −Re d1 and −Re d2.

We are interested long-time evolution subject to viscous damping and wind forcing.
Intuitively, one of the harmonics must then be growing and the other must be
damped. We can anticipate from figure 1 that energy must be added to the first-
harmonic wave, then transferred to the second-harmonic wave through nonlinear
interaction, and finally dissipated from the second-harmonic wave.

8. Recapitulation of second-order behaviour
In the limit of ε → 0, the second-order conservative behaviour of Wilton’s ripples

is well known (McGoldrick 1965, 1970; Simmons 1969; Chen & Saffman 1979). As
a reference for later analysis of the third-order system (6.37)–(6.39), it is convenient
to review the key results of the reduced system in terms of the present (X,Y , Z)
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Figure 2. Linear coefficients d1 and d2, equation (6.33).
—, Re d1; · · ·, Im d1; – –, Re d2; – · – · , Im d2.

variables, i.e.

Ẋ = −α30Y + 2XY , (8.1)

Ẏ = α30X + 1
2
Z − 2X2, (8.2)

Ż = −2Y Z. (8.3)

The only controlling parameter is

α30 = −2a10 + a20 (8.4)

which includes the Doppler effect of surface drift. The second-order energy is
conserved, and is given by

E0 = 4(X2 + Y 2) + 2Z = constant. (8.5)

The constancy of energy confines the dynamical behaviour to an elliptic paraboloid in
the (X,Y , Z)-space. Upon eliminating Z with the help of (8.5), we get the Hamiltonian
system

Ẋ = −α30Y + 2XY =
∂H

∂Y
, (8.6)

Ẏ = α30X − 3X2 − Y 2 + 1
4
E0 = −∂H

∂X
, (8.7)

with

H(X,Y ) = − 1
2
α30(X

2 + Y 2) +X(X2 + Y 2 − 1
4
E0). (8.8)

The trajectories on the elliptic paraboloid can therefore be obtained by computing
the level-curves of H .

One of the fixed points of the second-order system is in the (X,Y )-plane with
Z = 0. This implies that a pure second-harmonic wave is a steady-state solution. For
Z > 0 there are at most two fixed points (Xc, Yc, Zc) defined by

3X2
c − α30Xc − 1

4
E0 = 0, Yc = 0, Zc = 4X2

c − 2α30Xc. (8.9a, b, c)

By linearization, the fixed points (Xc, Yc, Zc) can be shown to be centres on the
surface of the elliptic paraboloid. The second-order conservative system has in fact
a continuum of centres along the parts of the parabola (8.9b,c) standing above the
(X,Y )-plane.
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Figure 3. Trajectories of second-order system for u′∗ = 0.1 m s−1 (α30 = 0.0572) and E0 = 0.01 (—).
The parabola of fixed points (with Z > 0) indicates the locations of the centres (- - -).
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Figure 4. Wave profiles for the steady-state solutions at the centres for u′∗ = 0.1 m s−1

(α30 = 0.0572) and E0 = 0.01: —, gravity type; · · ·, capillary type.

In figure 3 we show three-dimensional trajectories of the second-order system by
solid curves for one specific energy level E0 = 0.01 and for u′∗ = 0.1 m s−1. This implies
that α30 = 0.0572 according to (6.41). The parabola of fixed points is shown by a
dashed curve for Z > 0. The orbits are seen to be located on an elliptic paraboloid.

In figure 4 we show one wave period of the surface elevation η = η1, equation
(6.8), corresponding to the steady-state solutions at the two centres. We have again
set E0 = 0.01 and u′∗ = 0.1 m s−1. The phase angle is arbitrarily set to zero θ1 = 0;
the exact choice is immaterial since it only affects a trivial phase shift and not the
shape of the wave.

9. Third-order behaviour
The full dynamical system (6.37)–(6.39) will now be discussed. In the figures that

follow we set ε = µ = 1, and let the dynamical variables have proper magnitudes
consistent with the assumed scales. In particular A, B, X and Y must be O(ε) while
Z and the energy E must be O(ε2). In the following we thus limit our numerical
discussion to X,Y = O(0.1) and Z,E = O(0.01).
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Figure 5. The stability of fixed points: —, stable; · · ·, one unstable eigenvalue;
– · – · , three unstable eigenvalues.

9.1. Fixed points and their stability

From (6.39) we note that if Z = 0 initially, then Z = 0 for all time. This implies that
a pure second-harmonic wave is a steady-state solution.

The only fixed point in the (X,Y )-plane is the origin X = Y = Z = 0. The stability
of the origin can be analysed by considering the linearized system

d

dt1

 X
Y
Z

 =

 −εd2,R −α3 0
α3 −εd2,R α2

0 0 −2εd1,R

 X
Y
Z

 . (9.1)

It follows that the (X,Y )-plane is an eigenspace with two complex conjugate eigen-
values λ = −εd2,R ± iα3. The motion in the (X,Y )-plane is hence spiralling either into
or away from the origin. There is also an eigenvalue λ = −2εd1,R with an eigenvector
going out of the (X,Y )-plane.

For weak winds such that the first and second harmonics are linearly damped
(d1,R > 0, d2,R > 0), the origin is a stable fixed point. For intermediate winds such
that the first harmonic is linearly growing (d1,R < 0) and the second harmonic is
linearly damped (d2,R > 0), the origin is unstable along the eigendirection out of the
(X,Y )-plane, but is stable with inward spiralling motion in the (X,Y )-plane. For
stronger winds such that both harmonics are linearly growing, the origin is unstable
in all directions.

Next we look for fixed points with Z > 0. They are determined by setting the
right-hand sides in (6.37)–(6.39) equal to zero. For a given solution for X, we then
find that

Y ≈ −εd1,R, Z ≈ 4X2 − 2α30X. (9.2)

It is evident that these fixed points are located approximately on the parabola of
centres (8.9) found for the second-order conservative system. For a solution to be
acceptable, the resulting value of Z must be non-negative, and the magnitudes must
also be within the assumed bounds.

We have computed numerically the fixed points and their stability. Figure 5 shows
a bifurcation diagram in terms of the energy E versus the air friction velocity u′∗.
In order to stay in the range of validity of our theory, only results with E = O(ε2)
are plotted. The stability of the fixed points is indicated with different line styles
depending on the number of stable eigenvalues, as explained in the figure. There is a
fixed point with no energy E = 0 corresponding to no wave disturbance. This fixed
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Figure 6. Two trajectories for u′∗ = 0.08 m s−1. Initial conditions (−0.05, 0, 0.015) and
(0.05, 0, 0.015). Stable fixed point at the origin (0, 0, 0).
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Figure 7. Two trajectories for u′∗ = 0.12 m s−1. Initial conditions (−0.05, 0, 0.016) and (0.04, 0, 0.016).
The stable fixed point at (−0.019, 0.0010, 0.0030) can be seen as the gap in the trajectory, indicated
by the arrow.

stable fixed point. From another initial point (0.04, 0, 0.016) the trajectory first spirals
down along the branch of the parabola (8.9) with positive X. As it approaches the
(X,Y )-plane, it is at first trapped in the inward spiralling motion toward the origin,
but is then ejected up toward the stable fixed point. Thus both initial states lead to
Wilton’s ripples of permanent form.

Finally we examine a relatively strong wind with u′∗ = 0.17 m s−1 which is in wind
range (iii) with both the first and second harmonics linearly growing. In figure 8
the origin is an unstable fixed point. From the initial point (0.02, 0, 0.000001) the
trajectory first spirals away from the origin close to the (X,Y )-plane, signifying the
slow growth of the second harmonic. It is then ejected away from the (X,Y )-plane,
and becomes unbounded in Z , indicating rapid growth of the first harmonic.

The behaviour shown in figure 8 is qualitatively similar to the experimental obser-
vation of Choi (1977) and Ramamonjiarisoa et al. (1978) and the numerical result of
Janssen (1987): at first a second-harmonic wave grows slowly due to wind, then the
peak of the spectrum is suddenly shifted to a rapidly growing first-harmonic wave.
However, as our theory breaks down due to blow-up, the experiment suggests that
the spectrum actually becomes broad-banded.
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Figure 8. One trajectory for u′∗ = 0.17 m s−1. One initial condition (0.02, 0, 0.000001).
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Figure 9. Wave profiles for the stable steady-state solution for various wind speeds u′∗:
—, 0.10 m s−1; · · ·, 0.11 m s−1; – –, 0.12 m s−1; – · – · , 0.13 m s−1.

All our numerical experience in wind range (iii) suggests that the total wave energy
will grow out of bounds, i.e. blow-up.

9.3. The steady Wilton’s ripples

Because the stable non-trivial fixed point in wind range (ii) lies close to the parabola
of centres of the second-order system, it is mathematically similar to a special case
of the steady progressive waves found by Wilton (1915) and Pierson & Fife (1961).
However, the present theory gives information on the wind conditions under which
these waves are likely observable in reality.

In figure 9 we show one wave period of the surface elevation η = η1 +εη2, equations
(6.8) and (6.10), of the stable progressive waves with permanent form.

According to our results, Wilton’s ripples can sustain viscous damping if the air
friction velocity is roughly in the range 0.09–0.13 m s−1. From empirical relations
between the air friction velocity u′∗ and the reference wind speed, the threshold wind
speed for Wilton’s ripples to exist can be estimated. For example, Shemdin (1972)
reported that the friction velocity was 4.95% of the reference wind speed. Janssen
(1986) used the values 4.0% and 4.28% for application to the experiment of Choi
(1977). Klinke & Jähne (1992) found the ratio to be 4.90%. Based on these estimates,
the minimum wind speeds for steady Wilton’s ripples in dynamical equilibrium with
wind and viscosity should be roughly 2–3 m s−1, which is a light breeze on the
Beaufort scale.
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Strizhkin & Raletnev (1986) observed resonating triads on the sea surface for
reference wind speeds above 2.7 m s−1. This is clearly within our theoretical range,
being close to the boundary between wind ranges (ii) and (iii) of our theory.

10. Concluding remarks
To supplement existing theories on inviscid and wind-free gravity–capillary waves

which are difficult to produce in the laboratory or nature, we have developed a theory
for second-harmonic resonance of Wilton’s ripples under the influence of weak wind.
Limiting to slow modulation in time only, we have shown that there are essentially
three qualitatively different types of behaviour depending on the wind speed. For
winds weaker than a lower threshold, both the first- and the second-harmonic waves
are linearly damped and wave disturbances die out. For winds stronger than the lower
threshold, but weaker than an upper threshold, stable waves of permanent form exist
where nonlinearity, wind forcing and viscous damping are in dynamical equilibrium.
Thus we have shown that the steady inviscid ripples described by Wilton (1915) can
in fact be stable under certain conditions.

For still stronger winds, above the upper threshold, the total wave energy grows
without bound. Blow-up is known to occur for non-conservative second-order reso-
nant systems that have been truncated at the quadratic nonlinear order, and can occur
even when one of the waves is linearly damped. Previous authors (e.g. McDougall
& Craik 1991) have anticipated that such singular behaviour could be arrested by
including cubic nonlinear interactions. We have however shown that blow-up can
occur even when cubic nonlinear interactions are included. During the limited time
of evolution before the blow-up, the qualitative tendency of period doubling of phase
oscillations is similar to that observed experimentally by Choi (1977) and theoretically
by Janssen (1986, 1987) for relatively strong wind. Analysis of blow-up would require
a theory allowing the development of a broad-banded spectrum as in Janssen (1987).

Other extensions of this work on triad resonance appear desirable: (i) the effects
of wind and viscosity when the three component waves are in different directions, (ii)
slow evolution in both time and space, and (iii) the effects of longer gravity waves.
Progress in one or all of these aspects will further enhance our understanding of
small-scale processes on the sea surface.

This research has been supported by the US Office of Naval Research (N00014–
92J–1754), the US National Science Foundation (CTS–9115689) and the Norwegian
Research Council (NFR 109328/410).

Appendix. Energy of Wilton’s ripples correct to the third order
In dimensional variables, the wave kinetic energy is

Ek =

∫ η

−∞

ρ

2

{(
∂ψ

∂x

)2

+

(
∂ψ

∂z

)2

+ 2
∂ΨS

∂z

∂ψ

∂z

}
dz, (A 1)

the wave gravitational potential energy is

Eg =

∫ η

−∞
ρgz dz, (A 2)
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and the wave surface potential energy is

EΓ = Γ


(

1 +

(
∂η

∂x

)2
)1/2

− 1

. (A 3)

In the non-dimensional variables of §6, the kinetic energy becomes

Ek =
1

2

∫ 0

−∞

{(
∂ψ

∂x

)2

+

(
∂ψ

∂z

)2
}

dz + ε 1
2
η

{(
∂ψ

∂x

)2

+

(
∂ψ

∂z

)2
}
z=0

(A 4)

while the total potential energy becomes

Ep = Eg + EΓ = 1
3
η2 +

1

6

(
∂η

∂x

)2

. (A 5)

Hence the total energy is

E = Ek + Ep = 2(|A|2 + 2|B|2) + 2ε(a10|A|2 + a20|B|2) + εRe(A2B∗). (A 6)
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Chow, C. C., Bers. A. & Ram, A. K. 1992 The three wave interaction and spatiotemporal chaos.
Physics of Space Plasmas (1991) (ed. T. Chang, G. B. Crew & J. R. Jasperse). SPI Conf. Proc.
and Reprint Series, Number 11, pp. 179–195. Scientific Publishers, Inc., Cambridge, MA.

Christodoulides, P. & Dias, F. 1994 Resonant capillary-gravity interfacial waves. J. Fluid Mech.
265, 303–343.

Craik, A. D. D. 1986 Exact solutions of non-conservative equations for three-wave and second-
harmonic resonance. Proc. R. Soc. Lond. A 406, 1–12.

Gastel, K. van, Janssen, P. A. E. M. & Komen, G. J. 1985 On phase velocity and growth rate of
wind-induced gravity-capillary waves. J. Fluid Mech. 161, 199–216.

Hara, T. & Mei, C. C. 1994 Wind effects on the nonlinear evolution of slowly varying gravity-
capillary waves. J. Fluid Mech. 267, 221–250.

Harrison, W. J. 1909 The influence of viscosity and capillarity on waves of finite amplitude. Proc.
Lond. Math. Soc. 7, 107–121.

Hughes, D. W. & Proctor, M. R. E. 1992 Nonlinear three-wave interaction with non-conservative
coupling. J. Fluid Mech. 244, 583–604.

Janssen, P. A. E. M. 1986 The period-doubling of gravity–capillary waves. J. Fluid Mech. 172,
531–546.

Janssen, P. A. E. M. 1987 The initial evolution of gravity–capillary waves. J. Fluid Mech. 184,
581–597.

Jones, M. C. W. 1992 Nonlinear stability of resonant capillary-gravity waves. Wave Motion 15,
267–283.

Jurman, L. A., Deutsch, S. E. & McCready, M. J. 1992 Interfacial mode interactions in horizontal
gas–liquid flows. J. Fluid Mech. 238, 187–219.

Kawai, S. 1979 Generation of initial wavelets by instability of a coupled shear flow and their
evolution to wind waves. J. Fluid Mech. 93, 661–703.

Klinke, J. & Jähne, B. 1992 2D wave number spectra of short wind waves — results from wind
wave facilities and extrapolation to the ocean. In Optics of the Air-Sea Interface: Theory and
Measurements (ed. L. Estep). SPIE 1749, pp. 245–257.



Effects of weak wind and damping on Wilton’s ripples 163

McDougall, S. R. & Craik, A. D. D. 1991 Blow-up in non-conservative second-harmonic reso-
nance. Wave Motion 13, 155–165.

McGoldrick, L. F. 1965 Resonant interactions among capillary-gravity waves. J. Fluid Mech. 21,
305–331.

McGoldrick, L. F. 1970 On Wilton’s ripples: a special case of resonant interactions. J. Fluid Mech.
42, 193–200.

Miles, J. W. 1962 On the generation of surface waves by shear flows. Part 4. J. Fluid Mech. 13,
433–448.

Miles, J. W. 1976 On internal resonance of two damped oscillators. Stud. Appl. Maths 55, 351–359.

Morland, L. C. 1994 Resonant triads of capillary–gravity waves in the presence of a current. Phys.
Fluids 6, 588–594.

Nayfeh, A. H. 1973 Second-harmonic resonance in the interaction of an air stream with capillary-
gravity waves. J. Fluid Mech. 59, 803–816.

Pierson, W. J. & Fife, P. 1961 Some nonlinear properties of long-crested periodic waves with
lengths near 2.44 centimeters. J. Geophys. Res. 66, 163–179.

Ramamonjiarisoa, A., Baldy, S. & Choi, I. 1978 Laboratory studies on wind-wave generation,
amplification and evolution. In Turbulent Fluxes through the Sea Surface, Wave Dynamics, and
Prediction (ed. A. Favre & K. Hasselmann), pp. 403–420. Plenum.

Shemdin, O. H 1972 Wind-generated current and phase speed of wind waves. J. Phys. Oceanogr. 2,
411–419.

Simmons, W. F. 1969 A variational method for weak resonant wave interactions. Proc. R. Soc. Lond.
A 309, 551–575.

Strizhkin, I. I. & Raletnev, V. I. 1986 Experimental studies of three- and four-wave resonant
interactions of surface sea waves. Izv. Atmos. Ocean. Phys. 22(4), 311–314.

Trulsen, K. 1995 The influence of currents, long waves and wind on gravity–capillary waves. PhD
thesis, Massachusetts Institute of Technology.

Trulsen, K. & Mei, C. C. 1995 Modulation of three resonating gravity-capillary waves by a long
gravity wave. J. Fluid Mech. 290, 345–376.

Valenzuela, G. R. 1976 The growth of gravity-capillary waves in a coupled shear flow. J. Fluid
Mech. 76, 229–250.

Vyshkind, S. Y. & Rabinovich, M. I. 1976 The phase stochastization mechanism and the structure
of wave turbulence in dissipative media. Sov. Phys. JETP 44, 292–299.

Wersinger, J.-M., Finn, J. M. & Ott, E. 1980a Bifurcations and strange behavior in instability
saturation by nonlinear mode coupling. Phys. Rev. Lett. 44, 453–456.

Wersinger, J.-M., Finn, J. M. & Ott, E. 1980b Bifurcation and “strange” behavior in instability
saturation by nonlinear three-wave mode coupling. Phys. Fluids 23, 1142–1154.

Wilton, J. R. 1915 On ripples. Phil. Mag. 29, 688–700.


